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Abstract  

The present paper is a mathematical comment on a paper by Treder (Treder, 1970). 
The metric tensor g reduces the tangent bundle T of a space-time to the tangent Lorentz 
bundle L. The Levi-Civita connection in T induces in a natural way connections in L, 
and in the tensor product bundles of T, L, and the spiuor bundle S. These connections a r e  

' the general Lorentz-covariant connection' by Treder. It is possible to treat the local 
tetrad field components as local components of a global cross-section of L | T, with 
vanishing general Lorentz-covariant derivative. 

1. The Tangent  Lorentz  Bundle and its Connection 

In general, a space-time manifold 1/4 cannot be covered by one system of 
reference Z'. With V4 assumed to be paracompact, it can be covered by a 
countable family 5 p of systems of reference. Any two overlapping systems 
of reference, Z(,), Z(~), are, on the overlap of their ranges, related by a field 
of Lorentz transformations L(,~). 

In fact, by means of an everywhere regular metric g, the structure group 
GL(4, R) of the covariant tangent bundle T (i.e. the Einstein group) can be 
reduced to the Lorentz group. T looked at as a fibre bundle with Lorentz 
group as structure group (in short: as a Lorentz bundle), we denote by L. 
The family 5 p is an admissible bundle atlas of L. The quantities L(~) form 
the corresponding system of coordinate transformations. Of course, 5 a is 
also an admissible bundle atlas of T. 

In terms of a so-called natural frame (that is a frame spanned by the 
differentials of local coordinates dx~), the four legs of Z(~) are 

Z(,) A = dx  I h ~, inverse dx  ~ = Za)  A h ta 
(0 (0 

with natural components h~. Change of local coordinate implies trans- 
(0 

formation of natural vector components by an element of GL(4,R): with 
a ~ T ,  

a = dx  I az = dxV(xZ,l, al), (xZ,l,) e GL(4, R) 
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i .e. 
at --+ at, = x t , v  at 

Since 
a = dx  z at = Z (oA(h  z a at) = 2(,)  ̀ 4 aa 

( , )  

the Lorentz vector components are not affected by change of local co- 
ordinates. Change of Lorentz frames, 

Z'(,) a' = Z'(o`4L A', (L~') E Lorentz group 

in particular the change of systems of reference where they overlap, 

27(,)  = 

implies the transformation of Lorentz vector components by a Lorentz 
transformation: 

a = z . )  A' a`4, = z . )  A a`4, = z . ) A  aA, 

a = Z . )  a' aA, = 2:(~)a(L(~o]" a`4,) = Z(~)`4 aA 

respectively. 
The local components 1-'aBZ of a connection in a vector bundle (A, B are 

indices defined with respect to an admissible bundle chart; l is the label for 
the natural components) transform according to the law (Br/iuer, 1970) 

~t r`4' r n  + L] '  L ~ , , r  with r`4' r`4 8ff I ~ A ' B ' I '  ~ "~ , l ' l - ' ~ A  x"~B' I ~ A B I  ~ A  ~ B '  

where (XZ,r) corresponds to a transformation of local coordinates (from 
one admissible chart for V4 to another, on their overlap) and (La a') is an 
element of the structure group translating local vector components from 
one admissible bundle chart to another. 

For natural bundle charts, in the tangent bundle, with minuscules in 
place of capitals, i.e. with structure group GL(4,R), this equation reads 

Fi'k,Z , = xZ,v xt '  t Xk,k, ~ikZ + Xt',Z Xt,k,Z , 

Without change of local coordinates, i.e. if x z = 8~, x v, it reads 

1-'̀ 4"B,Z = LA" L~, I""~BZ + L~" L~,,z (1.1) 

The translation of natural components into Lorentz components is done 
by elements (ha)E GL(4,R). In this case, (1.1) turns into the Lorentz 
affinity 

I 1 A  _ _  I , A  I. ,m l '~k  A m 
B t  - -  n k  " B  ~ m t  -~- hmhB,z = 

_ _  A k _ _  A m 
m _ _  hm hB., z 

- hm(hs I "kZ  + hna) 

and we notice that the Lorentz connection (defined by the Lorentz affinities) 
is not a second connection besides the connection defined by the Christoffel 
symbols. Lorentz and Christoffel affinities are the local components of 
one and the same connection only seen from different bundle atlasses. 
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2. General Lorentz-covariant Connection 

The metric tensor g seen as a cross section of T | T, has the (natural) 
components g,k" Seen as a cross section o f L  | L, its local components are 
�9 /aB with respect to any admissible bundle chart o f L  | L: 

g = (dx' | dxk)g,k = (S.)a  h~ | Z,,)" h~)g,k = 
(0 

= ( s . ; '  | r .)") h'~ h ~ g,k = (~.)~ | ~.,") ~.,,, 
(0  (*) 

As fibre bundles, T and L are, of course, not identical but GL(4,R)-  
equivalent. (The above terminology suggests calling this equivalence 
Einstein equivalence.) This is what Treder calls duality between the Lorentz 
covariant and the coordinate covariant representation of tensorial quan- 
tities. 

The Levi-Civita connection in T with local components Fik~ induces a 
connection in the Lorentz bundle L with local components FABz. L is the 
natural residence of the connection defined by g because here the covariant 
constancy o f g  coincides with the constancy of its local components (*/AB). 
T together with the Levi-Civita connection is nothing but the GL(4, R)- or 
Einstein image of L and its resident. 

It seems unusual to study something like ~,~z, since why should we describe 
one and the same object partly by this bundle chart and partly by that! 
But the bridge to the Einstein image T of L is built just with such hybrids 
as the half-transformed metric tensor 

gkl h ~ = g Al ~ hAl = ~laB h ~ 
(t) (o  (t) (o  

called tetrad field. On the other hand, since these hybrids are elements of a 
tangent tensor bundle over //4 (unusually looked at !), it could seem un- 
reasonable to conduct parallel displacement with only one half of each. 
The complete parallel displacement is parallel displacement in L | T 
which is uniquely defined by the connections in L and T and, hence, by the 
connection in T alone. Explicit formulae can easily be obtained. The result 
is Treder's general covariant derivation (Treder, 1970). 

It is not surprising to find that the general covariant derivatives of the 
tetrads vanish, because substantially the tetrad is the hybridized metric 
tensor: 

( s . )  a | ax,) h A, = ( ~ . / |  dx ~ h I).7A= = ( s . )a  | ~.,=) ~A= 
(O (t) 

and the hal  a r e  the local components of a global cross-section of L | T. 
(t) 

As a matter of course, we are not forced to handle the tetrad fields this 
way. For many purposes it will be more practical to take them as what they 
originally are: local vector fields on V4. 
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3. Connections on V4 with Spinor Structure 

A spinor structure is a double covering of the principal Lorentz bundle 
P(L) by a principal bundle P(S )  with the unimodular group SL(2) as 
structure group. Its existence has topological implications on V4. Since 
SL(2) is used as covering group of the restricted Lorentz group, there is 
exactly one connection in P(S)  and its associated tensor bundles. The local 
components in the associated vector bundle S (= spinor bundle) are 
Iwanenko's  spinor affinities. Again there is a unique ('general Lorentz- 
covariant ')  connection defined in the tensor product bundles formed with 
S, T, L (Br~iuer, 1970; Treder, 1970). 

According to Geroch's  discovery (Geroch, 1968), however, the topological 
condition on a noncompact  V4 to admit a spinor structure is the existence 
of a Fernparallelismus on V4. That  is, such a space-time can be covered 
by one single system of reference 27. 
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